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Abstract

A numerical method for the junction of two cylindrical waveguides is developed by con-
structing a positive definite function from the boundary conditions and minimizing it with
respect to the modal amplitudes. The junction of two rectangular waveguides is treated with
mode and current probe excitations. Many types of diaphragms and junctions that are not
available in the literature are treated. Of special interest is the case of a current ele-
ment across the gap in a thin metallic post.

Introduction

The solution of various waveguide discontinuities
has been treated in references [1,2,3,41 applying es-

sentially the same mode matching techniques. Thi S

technique, however, exhibits a phenomenon of relative
convergence first described in [11. Other shortcomings
have also been noted, Reference [4] shows that for the

application of the Galerkinls method the ratio of the
number of modes should be properly chosen. In addition,
if it is applied to the thin iris discontinuity, the
coefficient matrix of the modal amplitudes becomes sin-
gular unless an aperture field is assumed. Furthermore,
these references treat different types of discontinu-
ities, such as boundary enlargement and reduction,
separately--requiring special computer programs--in
each case.

We propose here a different approach to the mode
matching technique, whereby the boundary conditions at
the junction are satisfied in the mean square sense.
l%is method has an intuitive appeal, is conceptually
simple, does not have any of the problems of the rela-
tive convergence or singular matrices of the previous
methods and does not depend on a judicious choice of
the number of modes. It leads to a set of linear equa-

tions for the modal amplitudes which is stable, since
the diagonal elements of the coefficient matrix usually

have the largest magnitudes. This approach leads to

general programs capable of handling large classes of

problems. This is a highly desirable feature from the

user’s point of view in spite of its unavoidable inef-

ficiencies. Because this approach does not rely heavi-

ly on the orthogonality of the modes or on their non-
degeneracy, one need not orthogonalize the modes when
degeneracies appear. This problem would be particular-

ly troublesome in circular cylindrical waveguides.

Theoretical Development

We develop the method by considering the junction
of two cylindrical waveguides as shown in Fig. 1, as-

suming the second guide matched although this is not a
requirement imposed by the technique. We express the

fields by their truncated modal expansions, and con-

struct a so-called error function E by integrating the

magnitude squared of the expressions for the boundary

conditions at the junctioti-

Jc=. ap@H2-Hl
J J

)-#ds+ aP~zx(E2-E1)+#ds+ c(l)~llzds.-

1 IE2 [ 2ds
+ c(2)

[1)

where superscripts 1 and 2 represent the appropriate
fields in the first and second guide respectively; ~

and M are electric and magnetic surface currents over
some portion of the cross section at the junction; ap

denotes the area of the apertures; c(1) and c(2) denote
the surface area of the conducting diaphragms at the

junction toward the first and second guide respectively.

a is a weighting factor to balance the contribution of

the error due to the H field.

The minimum of E, which is a function of the modal
coefficients, corresponds to the best matching of the
fields at the junctions in the least square sense.

Since E is quadratic in the modal amplitudes, its
unique minimum point can be obtained by solving a set
of linear equations. We may express the boundary con-
ditions as a linear matrix equation

LV=f (2)

where V is the modal coefficients vector and f is the

excitation vector; the elements of L and f are functions

of the mode functions. It can be shown that the set of

linear equations which specifies the minimum of c is

the solution of the linear equation

* *
<L ,L> V = <L ,f> (3)

<L*,L> denotes the scalar multiplication of matrix L by
its conjugate transpose where each element ia integrated
wherever valid [6]. The coefficient matrix is hermitian
with the ensuing savings on computer storage requirement.
Faster numerical routines are also available for the in-
version of such matrices.

A variety of waveguide discontinuities such as bends,
cascade of waveguides, bifurcation, multiple guide

junctions, dielectric slabs and posts, metallic posts,
metallic posts excited by a current probe across the

gap, etc. can be readily treated by this method.

Parallel Plate Waveguide

As a simple example to check the method we have
treated the step down discontinuity in a parallel
plate waveguide. The formulation of the problem and
the related computer program may be found in [6]. The

‘esults behave as ‘xpected”-5%f~d&rni~~;;d&have asymptotically as An*n

to the edge condition.

Rectangular Waveguides

The junction of two offset rectangular wa.veguides

is treated in detail. It is necessary to assume general

fields as the sum of TE and TM modes to, say, z, the

axis of propagation. The behavior of the inductive and
capacitive diaphragms discussed in [51, and other spe-
cial cases can be explained by the proper arrangement
of the elements in the linear equation for the modal
coefficients in [3]. For example, for the TEIO excita-
tion the inductive discontinuity (cylindrical along the
narrow eide) generates T~o modes and no TN modes,

whereas the capacitive junction (cylindrical along the

broad side) generates TE1n and TMIn modes.

A computer program is available for the junction of
two dissimilar rectangular waveguides. It assumes that

the sidea of the apertures are parallel to thecoordinate
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axes. However, apertures with arbitrary boundaries can

be readily treated by performing the relevant double
integrations numerically. The double integrations re-
duce to single ones. The excitation may be by incident
TE or TM modes or a constant current sheet at the junc-

tion. Whenever the two guides are identical we may
effectively reduce the number of unknown modal coeffi-

cients by half using the symmetry. A computer program

is also written for this case. The equivalent suscep-
tances obtained from rather extensive computer program
runs compare favorably with the available literature.

The sample examples presented here treat cases
which have not been handled before. Figure 2 plots IEI

along the height at x =.3 for two capacitive metallic
strips across the cross section of a rectangular wave-

guide. IE I oscillates over the aperture, as it does
in the related case of the parallel plate capacitive

junction. It peaks up over the aperture toward the “

edges of the metallic strips and tends to zero over the
strips. The relevant data and the equivalent suscep-

tance are included in the caption. For the inductive

junction, the variation of IEI over the aperture along

the broad side at the midpoint of the height resembles

half a sine function. The detailed results for a var-
iety of cases such as inductive and capacitive metallic
strips, change in height or width, inductive and capac-
itive junction of two rectangular waveguides, etc. may
be found in [6]. Figure 3 plots -~ + 1 along y =.2

5for a waveguide excited by a constant y- irected cur-
rent probe across the gap in a zero thickness metallic

poet. The discontinuity in ~ at the junction should
be equal to the y-directed induced current.

Weighting Factor

It may be shown that the minimum of the error func-

tion s is a monotone increasing function of ix, and that
increasing a decreases the contribution of the partial

error due to the H field and increases that due to the
E field, and vice versa. On the other hand, we expect

to increase the weight on the error due to the E field
(decrease a) whenever the portions of the junction with

large values of IEI are covered with metallic conductor
or the total aperture area is small. These points then
indicate that there is at least a range of optimum

values of a with respect to the number of modes selectei.
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Fig. 1 Junction of two cylindrical
waveguides.

A criterion for the selection of best u may be the
conservation of real power. The real power and the
equivalent susceptance are obtained from the propagating
modal amplitudes. Consequently, the best a as far as
the equivalent susceptance is concerned is that for

which the conservation of real power is best satisfied.
The normalized susceptance of asymmetric inductive

strip and the discrepancy in the conservation of real
power (p ) are plotted in Fig. 4. For larger number of

5modes, t e susceptance is less sensitive to the varia-

tion of a as indicated by the smaller slope of its curve.

Pr Progressively decreases for higher number of modes.
It has a broad minimum against a, and for the corre-
sponding values of a the susceptance changes only

slightly. We may thus obtain at least the range of

appropriate values of a. The correct value of the
normalized susceptance is 1.08 and occurs at about the
minimum of pr.

Conclusion

This method is suitable for implementation on digi-

tal computers. It can be readily extended to different

kinds of discontinuities. The procedure ia to write
all the boundary conditions in a matrix equation and

perform the operations denoted in (3). As was mentimd
before, besides having its own merits this procedure
does not suffer the complications associated with other
mode matching techniques.
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Fig. 2 Capacitive strips in rectangular waveguide.
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Fig. 3 Current probe excitation of a
rectangular waveguide.
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Asymmetric Inductive Metallic Strip
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