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Abstract

A numerical method for the junction of two cylindrical waveguildes is developed by con-
structing a positive definite function from the boundary conditions and minimizing it with

respect to the modal amplitudes.
mode and current probe excitations.
available in the literature are treated.
ment across the gap in a thin metallic post.

Introduction

The solution of various waveguide discontinuities
has been treated in references [1,2,3,4] applying es-
sentially the same mode matching techniques. This
technique, however, exhibits a phenomenon of relative
convergence first described in [1]. Other shortcomings
have also been noted. Reference [4] shows that for the
application of the Galerkin's method the ratio of the
number of modes should be properly chosen. 1In addition,
if it is applied to the thin iris discontinuity, the
coefficient matrix of the modal amplitudes becomes sin-—
gular unless an aperture field is assumed. Furthermore,
these references treat different types of discontinu-
ities, such as boundary enlargement and reduction,
separately--requiring special computer programs-~-in
each case.

We propose here a different approach to the mode
matching technique, whereby the boundary conditions at
the junction are satisfied in the mean square sense.
This method has an intuitive appeal, is conceptually
simple, does not have any of the problems of the rela~
tive convergence or singular matrices of the previous
methods and does not depend on a judicious choice of
the number of modes. It leads to a set of linear equa-
tions for the modal amplitudes which is stable, since
the diagonal elements of the coefficient matrix usually
have the largest magnitudes. This approach leads to
general programs capable of handling large classes of
problems. This is a highly desirable feature from the
user's point of view in spite of its unavoidable inef-
ficiencies. Because this approach does not rely heavi-
ly on the orthogonality of the modes or on their non-

_ degeneracy, one need not orthogonalize the modes when
degeneracies appear. This problem would be particular-
ly troublesome in circular cylindrical waveguides.

Theoretical Development

We develop the method by considering the junction
of two cylindrical waveguides as shown in Fig. 1, as-
suming the second guide matched although this is not a
requirement imposed by the technique. We express the
fields by their truncated modal expansions, and con-
struct a so-called error function € by integrating the
magnitude squared of the expressions for the boundary
conditions at the junction”
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where superscripts 1 and 2 represent the appropriate
fields in the first and second gulde respectively; J
and M are electric and magnetic surface currents over
some portion of the cross section at the junction; ap
denotes the area of the apertures; c(l) and c(2) denote
the surface area of the conducting diaphragms at the

The junction of two rectangular waveguides is treated with
Many types of diaphragms and junctions that are not
Of special interest is the case of a current ele-

junction toward the first and second guide respectively.
o is a weighting factor to balance the contribution of
the error due to the H field.

The minimum of ¢, which is a function of the modal
coefficients, corresponds to the best matching of the
fields at the junctlons in the least square sense.
Since ¢ is quadratic in the modal amplitudes, its
unique minimum point can be obtained by solving a set
of linear equations. We may express the boundary con-
ditions as a linear matrix equation

1V = f (2)

where V is the modal coefficients vector and f is the
excitation vector; the elements of L and f are functions
of the mode functions. It can be shown that the set of
linear equations which specifies the minimum of ¢ is

the solution of the linear equation

* *
<L ,L> V = <L ,f> (3)

%
<L ,L> denotes the scalar multiplication of matrix L by
its conjugate transpose where each element 1s Integrated
wherever valid [6]. The coefficient matrix is hermitian
with the ensuing savings on computer storage requirement.
Faster numerical routines are also available for the in-
version of such matrices.

A variety of waveguide discontinuities such as bends,
cascade of waveguides, bifurcations, multiple guide
junctions, dielectric slabs and posts, metallic posts,
metallic posts excited by a current probe across the
gap, etc. can be readily treated by this method.

Parallel Plate Waveguide

As a simple example to check the method we have
treated the step down discontinuity 1in a parallel
plate waveguide. The formulation of the problem and
the related computer program may be found in [6]. The
results behave as expected. ;ge modal magnitudes be-
have asymptoically as A wn™313 gor large n according
to the edge condition.

Rectangular Waveguides

The junction of two offset rectangular waveguides
is treated in detail. It is necessary to assume general
fields as the sum of TE and T modes to, say, z, the:
axis of propagation. The behavior of the inductive and
capacitive diaphragms discussed in [5], and other spe~
cial cases can be explained by the proper arrangement
of the elements in the linear equation for the medal
coefficients in [3]. For example, for the TE,  excita-
tion the inductive discontinuity (cylindrical along the
narrow side) generates TEp, modes and no TM modes,
whereas the capacitive junction (cylindrical along the

broad side) generates TE, and TM. modes.
1n 1n

A computer program is available for the junction of
two digssimilar rectangular waveguides. It assumes that
the sides of the apertures are parallel to the coordinate
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axes. However, apertures with arbitrary boundaries can
be readily treated by performing the relevant double
integrations numerically. The double integrations re-
duce to single ones. The excitation may be by incident
TE or TM modes or a constant current sheet at the junc-
tion. Whenever the two guides are identical we may
effectively reduce the number of unknown modal coeffi-
cients by half using the symmetry. A computer program
is also written for this case. The equivalent suscep-
tances obtained from rather extensive computer program
runs compare favorably with the available literature.

The sample examples presented here treat cases
which have not been handled before. Figure 2 plots |E|
along the height at x =.3 for two capacitive metallic
strips across the cross section of a rectangular wave-
guide. |E| oscillates over the aperture, as it does
in the related case of the parallel plate capacitive
junction. It peaks up over the aperture toward the
edges of the metallic strips and tends to zero over the
strips. The relevant data and the equivalent suscep-
tance are included in the caption. For the inductive
junction, the variation of |E| over the aperture along
the broad side at the midpoint of the height resembles
half a sine function. The detailed results for a var-
iety of cases such as inductive and capacitive metallic
strips, change in height or width, inductive and capac-
itive junction of two rectangular waveguides, etc. may
be found in [6]. Figure 3 plots —H% + H% along y =.2
for a waveguide excited by a constant y-directed cur-
rent probe across the gap in a zero thickness metallic
post. The discontinuity in H, at the junction should
be equal to the y-directed induced current.

Weighting Factor

It may be shown that the minimum of the error func-
tion £ is a monotone increasing function of o, and that
increasing o decreases the contribution of the partial
error due to the H field and increases that due to the
E field, and vice versa. On the other hand, we expect
to increase the weight on the error due to the E field
(decrease o) whenever the portions of the junction with
large values of |E| are covered with metallic conductor
or the total aperture area is small. These points then
indicate that there is at least a range of optimum
values of o with respect to the number of modes selected.

A criterion for the selection of best o may be the
conservation of real power. The real power and the
equivalent susceptance are obtained from the propagating
modal amplitudes. Consequently, the best o as far as
the equivalent susceptance is concerned is that for
which the conservation of real power is best satisfied.
The normalized susceptance of asymmetric inductive
strip and the discrepancy in the conservation of real
power (p ) are plotted in Fig. 4. For larger number of
modes, the susceptance is less sensitive to the varia-
tion of o as indicated by the smaller slope of its curve.
Pp Progressively decreases for higher number of modes.
It has a broad minimum against o, and for the corre-
sponding values of o the susceptance changes only
slightly. We may thus obtain at least the range of
appropriate values of o. The correct value of the
normalized susceptance is 1.08 and occurs at about the
minimum of P.-

Conclusion

This method is suitable for implementation on digi-
tal computers. It can be readily extended to different
kinds of discontinuities. The procedure is to write
all the boundary conditions in a matrix equation and
perform the operations denoted in (3). As was mentioned
before, besides having its own merits this procedure
does not suffer the complications associated with other
mode matching techniques.
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Fig., 2 Capacitive strips in rectangular waveguide.
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